A simplified mathematical model of carbon dioxide (CO2) concentrations and temperature found a “lag time” between human intervention and an actual decrease in CO2 levels.
A simplified mathematical model of carbon dioxide (CO2) concentrations and temperature found a “lag time” between human intervention and an actual decrease in CO2 levels. This lag time has ramifications for intervention strategies meant to avoid climate tipping points and potentially catastrophic temperature increases.
“Broadly speaking, this is a simple energy balance model that allows you to analyze various emission reduction and carbon capture strategies and their effect on climate over time,” says Mohammad Farazmand, assistant professor of mathematics at North Carolina State University and corresponding author of the work. “Fully resolved climate models are too complex to do this sort of analytic work on.”
To that end, the researchers used the mean surface temperature and CO2 concentration for Earth as a whole when creating the model, rather than attempting to account for variations in temperature and humidity across the globe.
The model, a system of stochastic delay differential equations, takes into account carbon emission and capture rates. It has two main components. First, it compares CO2 sources and CO2 sinks, either naturally occurring or manmade, to indicate the rate at which CO2 is being pumped into the atmosphere. Second, it accounts for solar radiation entering the atmosphere which is either trapped there or reflected back. Once these data were put into the model, the researchers were able to look at what happens as CO2 emission rates fall over different timescales.
Read more at North Carolina State University
Photo Credit: makabera via Pixabay