What Doesn’t Kill You Makes You Stronger: Illinois Research Shows Crops Have Drought ‘Memory’ to Help Reduce Yield Loss

Typography

According to new research from the University of Illinois, crops that experience drought conditions or extreme temperatures during their early stages of growth and survive are better able to deal with those same conditions later in their growth cycle.

According to new research from the University of Illinois, crops that experience drought conditions or extreme temperatures during their early stages of growth and survive are better able to deal with those same conditions later in their growth cycle. This ‘memory,’ or adaptation by the plant, could help reduce yield loss that year and help researchers prevent future yield loss.

“What we have seen is if the crop survives an early drought, because of that experience they perform better when a drought occurs very close to harvest,” said Peng Fu, a postdoctoral researcher at Illinois. “We think the crop responds to the drought and adapts to it, so when it happens again the crops have already planned for the drought and the impact is lessened.”

Unlike other drought or climate change research that takes place in a highly controlled environment, this behavior has been observed in corn and soybean fields across Illinois, Indiana, and Iowa. This allows the researchers to look at how crops develop an ability to plan for extreme temperatures and drought, conditions that are only expected to increase in coming years due to climate change.

“Our motivation here is based on the climate change reports and projections we have seen from different agencies that say the Midwest is seeing record heat,” said Fu, a member of the Realizing Increased Photosynthetic Efficiency (RIPE) project team who conducted the research. “Since it will continue to happen, we need to develop crop cultivars that can cope with these extreme climates to ensure food security in the U.S. Midwest. Understanding how much climate change could impact crop yield is very important.”

Read more at Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

Photo Credit: 12019 via Pixabay