Throughout Earth's oceans runs a conveyor belt of water. Its churning is powered by differences in the water's temperature and saltiness, and weather patterns around the world are regulated by its activity.
Throughout Earth's oceans runs a conveyor belt of water. Its churning is powered by differences in the water's temperature and saltiness, and weather patterns around the world are regulated by its activity.
A pair of researchers studied the Atlantic portion of this worldwide conveyor belt called the Atlantic Meridional Overturning Circulation, or AMOC, and found that winter weather in the United States critically depends on this conveyor belt-like system. As the AMOC slows because of climate change, the U.S. will experience more extreme cold winter weather.
The study, published in the journal Communications Earth & Environment was led by Jianjun Yin, an associate professor in the University of Arizona Department of Geosciences and co-authored by Ming Zhao, a physical scientist at the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory.
AMOC works like this: Warm water travels north in the upper Atlantic Ocean and releases heat into the atmosphere at high latitudes. As the water cools, it becomes denser, which causes it to sink into the deep ocean where it flows back south.
Read more at University of Arizona
Photo Credit: Hans via Pixabay