As the global climate continues to change and extreme weather events increasingly threaten regions all over the world, accurate weather forecasting is becoming more important than ever.
As the global climate continues to change and extreme weather events increasingly threaten regions all over the world, accurate weather forecasting is becoming more important than ever.
In a new study published in Scientific Reports, a research team led by Institute of Industrial Science, The University of Tokyo reports that weather forecast accuracy can be improved by several percentage points if satellite observations of water vapor isotope compositions are incorporated into a general circulation model.
Different isotopes of hydrogen and oxygen make individual water molecules heavier or lighter, and weather processes like evaporation and precipitation influence the distributions of these isotopes. These isotopes have potential to reveal the weather system, but have generally been neglected in meteorological models because of the relative scarcity of isotope data compared with conventional weather measurements like temperature and wind speed. However, advances in satellite technology have made it possible to fill this gap and improve forecasting ability.
For this study, the researchers used water vapor isotope data from the Infrared Atmospheric Sounding Interferometer (IASI), a satellite-based spectrometer that observes water vapor data in the mid-troposphere between 60°S to 60°N twice a day. Measurements from an altitude of 4.5 km were used because this altitude was where the isotope measurements were most reliable.
Read more at Institute of Industrial Science, The University of Tokyo
Photo Credit: Free-Photos via Pixabay