Thermoelectric power generators that make electrical power from waste heat would be a useful tool to reduce greenhouse gas emissions if it weren’t for a most vexing problem: the need to make electrical contacts to their hot side, which is often just too hot for materials that can generate a current.
Thermoelectric power generators that make electrical power from waste heat would be a useful tool to reduce greenhouse gas emissions if it weren’t for a most vexing problem: the need to make electrical contacts to their hot side, which is often just too hot for materials that can generate a current.
The heat causes devices to fail over time.
Devices known as transverse thermoelectrics avoid this problem by producing a current that runs perpendicular to the conducting device, requiring contacts only on the cold end of the generator. Though considered a promising technology, the materials known to create this sideways voltage are impractically inefficient – or so scientists thought.
Ohio State University researchers show in a new study that a single material, a layered crystal consisting of the elements rhenium and silicon, turns out to be the gold standard of transverse thermoelectric devices.
Read more at Ohio State University
Photo Credit: 0532-2008 via Pixabay