Study: Fluorescent Light Clarifies Relationship Between Heat Stress and Crop Yield

Typography

Illinois researchers found that fluorescent light sensors can detect the otherwise invisible signs of high-temperature stress in soybeans and that this stress is linked to a reduction in crop yield.

Scientists report that it is possible to detect and predict heat damage in crops by measuring the fluorescent light signature of plant leaves experiencing heat stress. If collected via satellite, this fluorescent signal could support widespread monitoring of growth and crop yield under the heat stress of climate change, the researchers say.

Their study measures sun-induced chlorophyll fluorescence – or SIF – to monitor a plant’s photosynthetic health and establish a connection between heat stress and crop yield. The findings are published in the journal Global Change Biology. Sun-induced chlorophyll fluorescence occurs when a portion of photosynthetic energy, in the form of near-infrared light, is emitted from plant leaves, the researchers said.

“There is a link between sun-induced chlorophyll fluorescence and photosynthetic rate in plants; however, it was unclear if SIF detection could measure physiological responses in heat-stressed plants,” said lead author Hyungsuk Kimm, a natural and resources and environmental sciences graduate student at the University of Illinois Urbana-Champaign. “When soybeans are exposed to high-temperature stress, for example, they do not show any distinctive changes in canopy structure, and conventional remote sensing signals do not provide clear consequential spectral signatures.”

Continue reading at University of Illinois Urbana-Champaign

Image via University of Illinois Urbana-Champaign