Limiting Water Stress Risks: Irrigation Management Key for Bioenergy Production to Mitigate Climate Change

Typography

To avoid a substantial increase in water scarcity, biomass plantations for energy production need sustainable water management, a new study shows. 

To avoid a substantial increase in water scarcity, biomass plantations for energy production need sustainable water management, a new study shows. Bioenergy is frequently considered one of the options to reduce greenhouse gases for achieving the Paris climate goals, especially if combined with capturing the CO2 from biomass power plants and storing it underground. Yet growing large-scale bioenergy plantations worldwide does not just require land, but also considerable amounts of freshwater for irrigation – which can be at odds with respecting Earth’s Planetary Boundaries. Scientists now calculated in their to date most detailed computer simulations how much additional water stress could result for people worldwide in a scenario of conventional irrigation and one of sustainable freshwater use.

“Irrigation of future biomass plantations for energy production without sustainable water management, combined with population growth, could double both the global area and the number of people experiencing severe water stress by the end of the century, according to our computer simulations,” says lead author Fabian Stenzel from the Potsdam Institute for Climate Impact Research (PIK) who developed the research idea in the Young Scientists Summer Program of the International Institute for Applied Systems Analysis (IIASA). “However, sustainable water management could almost halve the additional water stress compared to another analyzed scenario of strong climate change unmitigated by bioenergy production.”

Read more at Potsdam Institute for Climate Impact Research (PIK)

Photo Credit: SplitShire via Pixabay