A new study published today in the journal Geophysical Research Letters used NASA’s ice-measuring laser satellite to identify atmospheric river storms as a key driver of increased snowfall in West Antarctica during the 2019 austral winter.
A new study published today in the journal Geophysical Research Letters used NASA’s ice-measuring laser satellite to identify atmospheric river storms as a key driver of increased snowfall in West Antarctica during the 2019 austral winter.
These findings from scientists at Scripps Institution of Oceanography at the University of California San Diego and colleagues will help improve overall understanding of the processes driving change in Antarctica, and lead to better predictions of sea-level rise. The study was funded by NASA, with additional support from the Rhodium Group’s Climate Impact Lab, a consortium of leading research institutions examining the risks of climate change.
Atmospheric rivers are phenomena that transport large amounts of water vapor in long, narrow “rivers” in the sky. They are known to be the main driver of precipitation along the West Coast of the United States, accounting for 25-50 percent of annual precipitation in key parts of the West. Increasing research on atmospheric rivers finds that they dominantly impact the western coasts of most continents, due to oceans evaporating and storms building high levels of moisture into the atmosphere.
Read More: University of California - San Diego
Thwaites Glacier in 2019. Credit: Kiya Riverman (Photo Credit: Kiya Riverman)