Smithsonian Scientists Reduce Uncertainty in Forest Carbon Storage Calculations

Typography

Investors who bet on tropical forest conservation and reforestation to solve global warming by storing carbon in wood face huge uncertainties because the science behind predicting carbon stocks is still shaky. 

Investors who bet on tropical forest conservation and reforestation to solve global warming by storing carbon in wood face huge uncertainties because the science behind predicting carbon stocks is still shaky. Even the best Earth Systems Models fail to predict how carbon stored by tropical forests varies from place to place. The New Phytologist invites scientists doing the “most-exciting, ground-breaking research” to review timely topics in a way that non-scientists can understand. Helene Muller-Landau, staff scientist at the Smithsonian Tropical Research Institute (STRI), was chosen to write the authoritative Tansley Review of carbon accounting in the tropics, published online this week.

Muller-Landau and STRI staff scientist Kristina Anderson-Teixeira, along with a STRI staff scientist at STRI’s Center for Tropical Forest Science-Forest Global Earth Observatory (Smithsonian ForestGEO), post-doctoral fellows from Columbia University and Princeton University and two STRI interns, sifted through dozens of studies to synthesize patterns of how tropical forest productivity and carbon storage varies across the globe. They conclude that warm, wet tropical forests with moderately fertile soils store more carbon.

“Ecologists have been studying tropical forests for over a hundred years, but most studies focus on a single forest type or a single region, making it hard to see the big picture of how carbon flows through forests,” Muller-Landau said. “We lacked a synthesis of how tropical forests vary with climate, soils and disturbance regime, and of what we know about the mechanisms underlying this variation.”

Read more at Smithsonian Tropical Research Institute

Photo Credit: stokpic via Pixabay