Research Reveals Previously Hidden Features Of Plant Genomes

Typography

An international team has decoded the full genome for the black mustard plant.

 

An international team led by the Plant Phenotyping and Imaging Research Centre (P2IRC) at the University of Saskatchewan (USask) and researchers at Agriculture and Agri-Food Canada (AAFC) has decoded the full genome for the black mustard plant—research that will advance breeding of oilseed mustard crops and provide a foundation for improved breeding of wheat, canola and lentils.

The team, co-led by P2IRC researchers Andrew Sharpe and Isobel Parkin, used a new genome sequencing technology (Nanopore) that results in very long “reads” of DNA and RNA sequences, providing information for crop breeding that was previously not available. The results are published today in Nature Plants.

“This work provides a new model for building other genome assemblies for crops such as wheat, canola and lentils. Essentially, it’s a recipe for generating a genome sequence that works for any crop,” said Sharpe, director of P2IRC.  

“We now know that we can get the same quality of genomic data and level of information about genetic variation for these important national and international crops. This means we can make breeding more efficient because we can more easily select genes for specific desired traits.”  

 

Continue reading at University of Saskatchewan.

Image via Dave Stobbe.