Lead Poisoning Could Reduce Gene Expression In Humans

Typography

Scientists have unveiled a correlation between high blood lead levels in children and methylation of genes involved in haem synthesis and carcinogenesis, indicating a previously unknown mechanism for lead poisoning.

Scientists have unveiled a correlation between high blood lead levels in children and methylation of genes involved in haem synthesis and carcinogenesis, indicating a previously unknown mechanism for lead poisoning.

Lead poisoning is a well-documented disease, the incidence of which has drastically reduced since the use of lead has been curtailed. Nevertheless, many areas across the world still have unsafe levels of lead in the environment. Lead poisoning causes symptoms such as abdominal pain, kidney failure and infertility, among others, but the most damaging effects are seen in children, where it causes neurological and developmental deterioration; however, a number of mechanisms behind it have been elusive.

In the current work, published in the journal Environmental Research, scientists at Hokkaido University collaborated with colleagues at the University of Zambia to investigate blood lead levels in 140 children aged 2 to 10 years in Kabwe, Zambia. Children were chosen from townships close to and distant from an old, highly polluted lead-zinc mine. According to a survey conducted by the Blacksmith Institute (now, Pure Earth), due to this mine, Kabwe was considered one of the 10 most polluted places on Earth in 2013.

Read more at Hokkaido University

Image: Blood Lead Levels (BLLs) were measured in children from 5 townships in Kabwe and, independently, the prevalence of aberrant promoter methylation of ALAD and p16 genes was assessed using methylation specific PCR (MSP). The association between the two variables was statistically analysed and showed a correlation between them.  CREDIT: Yared B. Yohannes et al., Environmental Research, June 05, 2020