When it comes to “ocean color”, both the wavelength and intensity of the colors leaving the ocean are important.
Why are there so many songs about rainbows? For NASA’s upcoming Plankton, Aerosol, Cloud, ocean Ecosystem mission, or PACE, the colors of the rainbow — or, if you prefer, the visible wavelengths of the electromagnetic spectrum — are the key to unlocking a wealth of new data on skies and seas around the world.
PACE’s high-resolution instruments will see ocean and atmosphere features in unparalleled detail when the mission launches in 2023. By measuring the intensity of the color that exits Earth’s ocean surface, PACE will capture fine details about phytoplankton — tiny plantlike organisms and algae that live in the ocean — that are the basis of the marine food web and generate half of Earth’s oxygen. Beneficial phytoplankton communities fuel fisheries, but harmful algal blooms (HABs) can poison animals and humans and disrupt tourism and fishing industries.
When it comes to “ocean color”, both the wavelength and intensity of the colors leaving the ocean are important. Different species of phytoplankton and other substances in a body of water absorb and reflect different colors of light: clear open ocean water appears blue, water with lots of phytoplankton often appears green or turquoise, and water near the coast looks brown due to suspended sediments and dissolved organic material. PACE can see small variations in these visible color differences in far more detail than ever before.
Continue reading at NASA Goddard Space Flight Center
Image via NASA Goddard Space Flight Center