Ozone Disinfection Could Safely Allow Reuse of Personal Protective Equipment

Typography

A new study shows that ozone gas, a highly reactive chemical composed of three oxygen atoms, could provide a safe means for disinfecting certain types of personal protective equipment that are in high demand for shielding healthcare personnel from Covid-19.

A new study shows that ozone gas, a highly reactive chemical composed of three oxygen atoms, could provide a safe means for disinfecting certain types of personal protective equipment that are in high demand for shielding healthcare personnel from Covid-19.

Conducted by researchers at the Georgia Institute of Technology using two pathogens similar to the novel coronavirus, the study found that ozone can inactivate viruses on items such as Tyvek gowns, polycarbonate face shields, goggles, and respirator masks without damaging them — as long as they don’t include stapled-on elastic straps. The study found that the consistency and effectiveness of the ozone treatment depended on maintaining relative humidity of at least 50% in chambers used for disinfection.

“Ozone is one of the friendliest and cleanest ways of deactivating viruses and killing most any pathogen,” said M.G. Finn, chair of Georgia Tech’s School of Chemistry and Biochemistry, who led the study. “It does not leave a residue; it’s easy to generate from atmospheric air, and it’s easy to use from an equipment perspective.”

Findings of the research are described in a paper posted to the medRxiv preprint server and will be submitted to a journal for peer review and publication. Ozone can be produced with inexpensive equipment by exposing oxygen in the atmosphere to ultraviolet light, or through an electrical discharge such as a spark.

Read more at Georgia Institute of Technology

Image: Researcher Emmeline Blanchard from the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University places items into an ozone disinfection chamber for testing. (Photo: Georgia Tech)