Aqua Plants

Typography

UD research shows that submerged vegetation helps to offset Chesapeake Bay acidification.

For many years, the world’s oceans have suffered from absorbing human-made carbon dioxide from the atmosphere, which has led to the decreasing pH of saltwater, known as ocean acidification, and threatened the health of marine organisms and ecosystems. While this process has been well documented, the acidification process is complicated and poorly understood in coastal waters.

For example, the main stem of Chesapeake Bay, the largest estuary in the east coast, has suffered from low oxygen and acidification for years in its bottom waters. Unlike ocean waters, acidification in estuaries like Chesapeake Bay is driven by both fossil fuel-derived carbon dioxide as well as carbon dioxide released from the intense decomposition of algae spurred by nutrient inputs from surrounding land. Although scientists are improving their understanding of the causes of acidification, the ways in which coastal waters like Chesapeake Bay fight back and resist acidification are less known.

One possible way the Chesapeake Bay is combating ocean acidification comes in the form of an already present ally: submerged aquatic vegetation (SAV). While there was a bay-wide decline of SAV from the 1960s through the 1980s, restoring these once-abundant SAV beds has been a primary outcome of efforts to reduce loads of nutrients and sediments to the estuary and SAV cover has increased by 300 percent from 1984 to 2015.

Continue reading at University of Delaware

Image via University of Delaware