Researchers from Charité – Universitätsmedizin Berlin and the Francis Crick Institute have identified 27 proteins which are present at different levels in the blood of COVID-19 patients, depending on the severity of their symptoms.
Researchers from Charité – Universitätsmedizin Berlin and the Francis Crick Institute have identified 27 proteins which are present at different levels in the blood of COVID-19 patients, depending on the severity of their symptoms. These biomarker profiles could be used to predict disease progression and make it easier for doctors to decide which type of treatment to use. The work has been published in Cell Systems*.
People respond very differently to infection with the novel coronavirus (SARS-CoV-2). While some patients develop no symptoms at all, others will develop severe disease and may even die. For this reason, there is an urgent need for ‘biomarkers’, quantifiable biological characteristics which could provide a reliable means of predicting disease progression and severity. A research team led by Prof. Dr. Markus Ralser (Director of Charité’s Institute of Biochemistry, holder of an Einstein Professorship and Group Leader at the Francis Crick Institute) used state-of-the-art analytical techniques to rapidly determine the levels of various proteins in the blood plasma. This approach enabled the researchers to identify various protein biomarkers in the blood plasma of patients with COVID-19 which were linked to the severity of their disease.
The researchers developed a precise, high-throughput mass spectrometry platform capable of analyzing the patients’ proteomes – the compendium of proteins found in biological material – at a rate of 180 samples per day. Using this technology, the team analyzed blood plasma samples from 31 men and women who were receiving treatment at Charité for COVID-19 of varying degrees of severity. The researchers were able to identify 27 proteins in the blood which varied in quantity depending on disease severity. The researchers then validated these molecular signatures by analyzing samples from another group of 17 COVID-19 patients and 15 healthy people. Protein expression signatures were able to precisely classify patients according to the World Health Organization’s coding criteria for COVID-19.
Read more at Charité - Universitätsmedizin Berlin
Photo Credit: Belova59 via Pixabay