Reducing The Carbon Footprint Of Artificial Intelligence

Typography

Artificial intelligence has become a focus of certain ethical concerns, but it also has some major sustainability issues. 

Artificial intelligence has become a focus of certain ethical concerns, but it also has some major sustainability issues. 

Last June, researchers at the University of Massachusetts at Amherst released a startling report estimating that the amount of power required for training and searching a certain neural network architecture involves the emissions of roughly 626,000 pounds of carbon dioxide. That’s equivalent to nearly five times the lifetime emissions of the average U.S. car, including its manufacturing.

This issue gets even more severe in the model deployment phase, where deep neural networks need to be deployed on diverse hardware platforms, each with different properties and computational resources. 

MIT researchers have developed a new automated AI system for training and running certain neural networks. Results indicate that, by improving the computational efficiency of the system in some key ways, the system can cut down the pounds of carbon emissions involved — in some cases, down to low triple digits. 

Read more at Massachusetts Institute of Technology

Image: MIT researchers have developed a new automated AI system with improved computational efficiency and a much smaller carbon footprint. The researchers’ system trains one large neural network comprising many pretrained subnetworks of different sizes that can be tailored to diverse hardware platforms without retraining.  CREDIT: MIT News, based on figures courtesy of the researchers