Study finds that sediments can play a key role in determining the magnitude and location of devastating "megaquakes".
The world’s most powerful earthquakes strike at subduction zones, areas where enormous amounts of stress build up as one tectonic plate dives beneath another. When suddenly released, this stress can cause devastating “megaquakes” like the 2011 Mw 9.0 Tohoku event, which killed nearly 16,000 people and crippled Japan’s Fukushima Dai-ichi Nuclear Power Plant. Now a study published in Geology suggests that sediments atop the downgoing slab can play a key role in determining the magnitude and location of these catastrophic events.
In this newly published study, a team led by Gou Fujie, a senior scientist at the Japan Agency for Marine-Earth Science and Technology, used a trio of geophysical methods to image the subducting sediments in the northeastern Japan arc, where the Tohoku event occurred. The findings suggest that variations caused by volcanic rocks intruded into these sediments can substantially influence the nature of subduction zone earthquakes.
“Our imaging shows that the enormous amount of slip that occurred during the 2011 Tohoku earthquake stopped in an area of thin sediments that are just starting to subduct,” says Fujie. “These results indicate that by disturbing local sediment layers, volcanic activity that occurred prior to subduction can affect the size and the distribution of interplate earthquakes after the layers have been subducted.”
Continue reading at Geological Society of America
Image via Geological Society of America