Though they may look smooth, standard silicon wafers used for solar cells feature tiny pyramidal structures about two micrometres high.
Researchers from U of T Engineering and King Abdullah University of Science and Technology (KAUST) have overcome a key obstacle in combining the emerging solar-harvesting technology of perovskites with the commercial gold standard — silicon solar cells. The result is a highly efficient and stable tandem solar cell, one of the best-performing reported to date.
“Today, silicon solar cells are more efficient and less costly than ever before,” says Professor Ted Sargent (ECE), senior author on a new paper published today in Science. “But there are limits to how efficient silicon can be on its own. We’re focused on overcoming these limits using a tandem (two-layer) approach.”
Like silicon, perovskite crystals can absorb solar energy to excite electrons that can be channeled into a circuit. But unlike silicon, perovskites can be mixed with liquid to create a ‘solar ink’ that can be printed on surfaces.
The ink-based manufacturing approach — known as solution processing — is already well-established in the printing industry, and therefore has the potential to lower the cost of making solar cells.
Continue reading at University of Toronto
Image via University of Toronto