New Artificial Intelligence Algorithm Better Predicts Corn Yield

Typography

With some reports predicting the precision agriculture market will reach $12.9 billion by 2027, there is an increasing need to develop sophisticated data-analysis solutions that can guide management decisions in real time. 

With some reports predicting the precision agriculture market will reach $12.9 billion by 2027, there is an increasing need to develop sophisticated data-analysis solutions that can guide management decisions in real time. A new study from an interdisciplinary research group at University of Illinois offers a promising approach to efficiently and accurately process precision ag data.

“We’re trying to change how people run agronomic research. Instead of establishing a small field plot, running statistics, and publishing the means, what we’re trying to do involves the farmer far more directly. We are running experiments with farmers’ machinery in their own fields. We can detect site-specific responses to different inputs. And we can see whether there’s a response in different parts of the field,” says Nicolas Martin, assistant professor in the Department of Crop Sciences at Illinois and co-author of the study.

He adds, “We developed methodology using deep learning to generate yield predictions. It incorporates information from different topographic variables, soil electroconductivity, as well as nitrogen and seed rate treatments we applied throughout nine Midwestern corn fields.”

Martin and his team worked with 2017 and 2018 data from the Data Intensive Farm Management project, in which seeds and nitrogen fertilizer were applied at varying rates across 226 fields in the Midwest, Brazil, Argentina, and South Africa. On-ground measurements were paired with high-resolution satellite images from PlanetLab to predict yield.

Read more at University of Illinois College of Agricultural, Consumer and Environmental Sciences

Image: New research from the University of Illinois demonstrates the promise of convolutional neural network algorithm for crop yield prediction. (Credit: L. Brian Stauffer, University of Illinois)