Using Big Data to Combat Catastrophes

Typography

The new PRISM project will be able to integrate large data sets from finance, energy, agriculture, ecology, climate and other fields to analyze risk factors for catastrophes.

In March 1989, a tripped circuit in the Hydro-Québec power grid left 6 million people without electricity. A week earlier, an unusually harsh snowstorm had strained the region; the day before, a solar flare and accompanying release of plasma and magnetic field sent a mountain of energy propelling toward Earth at a million miles an hour.

The complex interactions of these interconnected systems — environmental science, space weather and solar activity — pushed the electric power grid to a tipping point that could not be understood within any single one of those systems.

The Predictive Risk Investigation System for Multilayer Dynamic Interconnection Analysis (PRISM), funded by the National Science Foundation, aims to harness data in order to identify risk factors across domains for catastrophic events such as the 1989 blackout, which impacted transportation, food, water, health and finance and racked up costs exceeding $2 billion.

Columbia University’s International Research Institute for Climate and Society, part of the Earth Institute, is one of the ten collaborating institutions on the project.

Continue reading at Columbia University Earth Institute

Image via Columbia University Earth Institute