A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.
A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.
SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins outside of the solar system. The effort is a collaboration among Washington University in St. Louis, Goddard Space Flight Center, California Institute of Technology Jet Propulsion Laboratory and the University of Minnesota.
The longer the balloon and instrument are up, the better.
“The significance of our observation increases with the number of events we observe essentially linearly with time, so we simply want to have as long a flight as possible to maximize the statistics of the data collected,” said Brian Rauch, research assistant professor of physics in Arts & Sciences at Washington University and principal investigator for SuperTIGER. “A day of data is a small increment of progress, and we just have to put our heads down and keep grinding away.
Read more at Washington University in St. Louis
Image: The Super Trans-Iron Galactic Element Recorder (SuperTIGER) instrument is used to study the origin of cosmic rays. SuperTIGER is a collaboration among Washington University in St. Louis, Goddard Space Flight Center, California Institute of Technology Jet Propulsion Laboratory and the University of Minnesota. The SuperTIGER instrument is carried aloft above Antarctica by a giant 39.5 million-cubic-foot scientific balloon. The balloon flies at a height of about 129,000 feet -- nearly four times the typical cruising altitude of commercial airliners. Here, the instrument is waiting on the launch pad as the balloon inflates. (Credit: Wolfgang Zober, Washington University in St. Louis)