A new study published by biologists at LMU demonstrates that there are no simple or universal solutions to the problem of engineering plants to enable them to cope with the challenges posed by climate change.
A new study published by biologists at LMU demonstrates that there are no simple or universal solutions to the problem of engineering plants to enable them to cope with the challenges posed by climate change.
For plants, climate change promises one thing for sure – increased levels of stress. After all, plants put down roots. They don’t have the option of moving to where the weather suits them. Wider fluctuations in temperatures and increasing levels of aridity in many regions around the world are already making their lives more difficult. Plants are highly complex and sensitive systems. Even in zones with stable climates today, variations in light levels can reduce growth rates and crop yields. For example, plants have developed sophisticated cellular mechanisms that protect them against the deleterious effects of high light intensities on photosynthesis. In one such photoprotective process, the excess light energy is dissipated as heat before it can damage the photosynthetic apparatus. This depresses yields but it is very much in the plant’s interest.
Three enzymes play a key role in this adaptation process, which are referred to as V, P and Z for short. In a paper published in 2016, which drew a great deal of attention, an American research group overexpressed the genes for these three proteins in tobacco plants, thus increasing the amounts of the enzymes produced in the leaves. They subsequently observed, under field conditions, that these ‘VPZ’ lines grew faster rates than did control plants with normal levels of the enzymes. LMU biologists Antoni Garcia-Molina and Dario Leister have now performed essentially the same experiment in the model plant Arabidopsis thaliana (thale cress). Their findings appear in the journal Nature Plants.
Read more at Ludwig-Maximilians-Universität München
Photo Credit: Couleur via Pixabay