Understanding the Impact of Deep-Sea Mining

Typography

Mining materials from the sea floor could help secure a low-carbon future, but researchers are racing to understand the environmental effects.

Resting atop Thomas Peacock’s desk is an ordinary-looking brown rock. Roughly the size of a potato, it has been at the center of decades of debate. Known as a polymetallic nodule, it spent 10 million years sitting on the deep seabed, 15,000 feet below sea level. The nodule contains nickel, cobalt, copper, and manganese — four minerals that are essential in energy storage.

“As society moves toward driving more electric vehicles and utilizing renewable energy, there will be an increased demand for these minerals, to manufacture the batteries necessary to decarbonize the economy,” says Peacock, a professor of mechanical engineering and the director of MIT’s Environmental Dynamics Lab (END Lab). He is part of an international team of researchers that has been trying to gain a better understanding the environmental impact of collecting polymetallic nodules, a process known as deep-sea mining.

The minerals found in the nodules, particularly cobalt and nickel, are key components of lithium-ion batteries. Currently, lithium-ion batteries offer the best energy density of any commercially available battery. This high energy density makes them ideal for use in everything from cellphones to electric vehicles, which require large amounts of energy within a compact space.

“Those two elements are expected to see a tremendous growth in demand due to energy storage,” says Richard Roth, director of MIT’s Materials Systems Laboratory.

Continue reading at Massachusetts Institute of Technology

Image via Massachusetts Institute of Technology