Birds of a feather may flock together, but the feathers of birds differ altogether.
Birds of a feather may flock together, but the feathers of birds differ altogether.
New research from an international team led by USC scientists set out to learn how feathers developed and helped birds spread across the world. Flight feathers, in particular, are masterpieces of propulsion and adaptation, helping penguins swim, eagles soar and hummingbirds hover.
Despite such diversity, the feather shares a common core design: a one-style-fits-all model with option trims for specialized performance. This simplicity and flexibility found in nature holds promise for engineers looking for better ways to build drones, wind turbines, medical implants and other advanced materials.
Those findings, published today in Cell, offer an in-depth look at the form and function of a feather based on a comparative analysis of their physical structure, cellular composition and evolution. The study compares feathers of 21 bird species from around the world.
Read more at University of Southern California
Image: A Taiwan blue magpie in flight. (Credit: Shao Huan Lang)