Switching to Solar and Wind Will Reduce Groundwater Use

Typography

IIASA researchers explored optimal pathways for managing groundwater and hydropower trade-offs for different water availability conditions as solar and wind energy start to play a more prominent role in the state of California.

California is the largest agricultural producer in the US. In the midst of one of the most devastating droughts on record (2012–2017), the agricultural sector still earned the state US$47 billion and contributed 13% of the country’s total agricultural output in 2015. This ability to maintain crop revenue, along with the overall resilience of the agricultural sector, largely relied on the unsustainable use of groundwater, which, while effectively offsetting the impact of the drought, contributed to severe groundwater depletion.

During the driest part of the drought, the decreased availability of surface water also saw California’s hydropower generation plunge to substantially below its long-term average. This power deficit was offset by electricity generated through the state’s rapidly growing solar and wind fleet, as well as from increased use of natural gas and electricity purchased from out-of-state sources. In 2012, solar and wind electricity generation in fact exceeded hydropower in California due to the declining cost of wind turbines and solar photovoltaic (PV), along with the popularity and stringency of the Renewables Portfolio Standard (RPS), which mandates more than a third of state-wide electricity generation from solar and wind energy by 2030.

According to a new study published in Nature Communications, there are under-appreciated benefits of solar and wind energy within the water-food-energy nexus that are still poorly understood, but have implications for optimizing trade-offs between energy and food production, as well as for improving resilience to drought and the sustainability of water resources. The study is the first to quantify the added benefits of solar and wind energy in enhancing resilience to hydroclimatic shocks like droughts beyond its traditional role of improving air quality and mitigating greenhouse gas emissions.

Continue reading at International Institute for Applied Systems Analysis

Image via International Institute for Applied Systems Analysis