Reassessing Strategies to Reduce Phosphorus Levels in the Detroit River Watershed

Typography

In an effort to control the cyanobacteria blooms and dead zones that plague Lake Erie each summer, fueled by excess nutrients, the United States and Canada in 2016 called for a 40% reduction in the amount of phosphorus entering the lake’s western and central basins, including the Detroit River’s contribution.

In an effort to control the cyanobacteria blooms and dead zones that plague Lake Erie each summer, fueled by excess nutrients, the United States and Canada in 2016 called for a 40% reduction in the amount of phosphorus entering the lake’s western and central basins, including the Detroit River’s contribution.

Both countries then developed domestic action plans that outline strategies to meet the new Great Lakes Water Quality Agreement targets.

But the current U.S. reduction strategy for the Detroit River doesn’t address Lake Huron, which is responsible for 54% of the phosphorus that ends up in the Detroit River, according to recent calculations from a University of Michigan-led research team.

Also, the current strategy doesn’t contemplate further reductions at the regional wastewater treatment plant in Detroit, the largest single, identifiable source of phosphorus entering the Detroit River. The Water Resource Recovery Facility has already reduced phosphorus in effluent by 51% since 2008.

Read more at University of Michigan

Photo Credit: geniuserp via Pixabay