Pressure May Be Key To Fighting Climate Change With Thermoelectric Generators

Typography

Pressure improves the ability of materials to turn heat into electricity and could potentially be used to create clean generators, according to new work from a team that includes Carnegie’s Alexander Goncharov and Viktor Struzhkin published in Nature Materials.

Pressure improves the ability of materials to turn heat into electricity and could potentially be used to create clean generators, according to new work from a team that includes Carnegie’s Alexander Goncharov and Viktor Struzhkin published in Nature Materials.

Alternative energy sources are key to combating climate change caused by carbon emissions. Compounds with thermoelectric capabilities can convert thermal energy’s innate, physical need to spread from a hot place into a cold place into energy—harvesting electricity from the temperature differential. In theory, generators built from these materials could be used to recover electricity from “wasted” heat given off by other processes, making major contributions to the nation’s energy budget.

However, engineers have been unable to improve the room-temperature performance of any thermoelectric materials in 60 years, meaning that devices built to take advantage of this capability are only practical for some very specific applications, including remote gas pipelines and spacecraft.

“Our measurement of the efficiency of room-temperature thermoelectricity has not budged in more than half a century,” said Goncharov. “Thermoelectric compounds have demonstrated improved performance at high temperatures, but we really need them to work well at room temperature to make the most of their potential for green energy.”

Read more at Carnegie Institution for Science

Image: This is an artist's conception of how applying pressure in the diamond anvil cell changes the electronic structure of lead selenide. (Credit: Courtesy of Xiao-Jia Chen)