The Great Alaskan Earthquake of 1964 and the tsunamis it spawned may have washed a tropical fungus ashore, leading to a subsequent outbreak of often-fatal infections among people in coastal regions of the Pacific Northwest, according to a paper co-authored by researchers at the Johns Hopkins Bloomberg School of Public Health and the nonprofit Translational Genomics Research Institute (TGen), an affiliate of City of Hope.
The Great Alaskan Earthquake of 1964 and the tsunamis it spawned may have washed a tropical fungus ashore, leading to a subsequent outbreak of often-fatal infections among people in coastal regions of the Pacific Northwest, according to a paper co-authored by researchers at the Johns Hopkins Bloomberg School of Public Health and the nonprofit Translational Genomics Research Institute (TGen), an affiliate of City of Hope.
In the paper, published online Oct. 1 in the journal mBio, the co-authors confront the mystery of the Cryptococcus gattii outbreak in the Pacific Northwest. The outbreak, involving at least several hundred known cases, has been ongoing since 1999, with cases still occurring in humans and wildlife. It has long puzzled epidemiologists because the fungal subtypes isolated from the vast majority of infected patients resemble subtypes normally seen in Brazil and nearby areas of South America.
The co-authors, microbiologist Arturo Casadevall, MD, PhD, Alfred and Jill Sommer Professor and Chair of Molecular Microbiology and Immunology at the Bloomberg School, and epidemiologist David Engelthaler, PhD, associate professor at the Translational Genomics Research Institute, posit that increased shipping after the 1914 opening of the Panama Canal brought C. gattii from south to north, possibly in ships’ ballast tanks. Decades later, the tsunamis following the Great Alaskan Earthquake of 1964 brought the fungus widely ashore and into coastal forest area. After several decades, as it evolved to cope with its new habitat, C. gattii began to infect people. The 9.2 quake of 1964 remains the largest ever recorded in the northern hemisphere, and the effects of the tsunami were felt as far away as Hawaii and beyond.
“The big new idea here is that tsunamis may be a significant mechanism by which pathogens spread from oceans and estuarial rivers onto land and then eventually to wildlife and humans,” says Casadevall. “If this hypothesis is correct, then we may eventually see similar outbreaks of C. gattii, or similar fungi, in areas inundated by the 2004 Indonesian tsunami and 2011 Japanese tsunami.”
Read more at Johns Hopkins University Bloomberg School of Public Health
Photo Credit: WikiImages via Pixabay