NASA’s TESS Mission Spots Its 1st Star-shredding Black Hole

Typography

For the first time, NASA’s planet-hunting Transiting Exoplanet Survey Satellite (TESS) watched a black hole tear apart a star in a cataclysmic phenomenon called a tidal disruption event. 

For the first time, NASA’s planet-hunting Transiting Exoplanet Survey Satellite (TESS) watched a black hole tear apart a star in a cataclysmic phenomenon called a tidal disruption event. Follow-up observations by NASA’s Neil Gehrels Swift Observatory and other facilities have produced the most detailed look yet at the early moments of one of these star-destroying occurrences.

“TESS data let us see exactly when this destructive event, named ASASSN-19bt, started to get brighter, which we’ve never been able to do before,” said Thomas Holoien, a Carnegie Fellow at the Carnegie Observatories in Pasadena, California. “Because we identified the tidal disruption quickly with the ground-based All-Sky Automated Survey for Supernovae (ASAS-SN), we were able to trigger multiwavelength follow-up observations in the first few days. The early data will be incredibly helpful for modeling the physics of these outbursts.”

A paper describing the findings, led by Holoien, was published in the Sept. 27, 2019, issue of The Astrophysical Journal and is now available online.

ASAS-SN, a worldwide network of 20 robotic telescopes headquartered at Ohio State University (OSU) in Columbus, discovered the event on Jan. 29. Holoien was working at the Las Campanas Observatory in Chile when he received the alert from the project’s South Africa instrument. Holoien quickly trained two Las Campanas telescopes on ASASSN-19bt and then requested follow-up observations by Swift, ESA’s (European Space Agency’s) XMM-Newton and ground-based 1-meter telescopes in the global Las Cumbres Observatory network.

Read more at NASA/Goddard Space Flight Center

Image: This illustration shows a tidal disruption, which occurs when a passing star gets too close to a black hole and is torn apart into a stream of gas. Some of the gas eventually settles into a structure around the black hole called an accretion disk. (Credit: NASA's Goddard Space Flight Center)