Chemistry of plants makes a big difference in how quickly they burn.
As fires throughout Utah have demonstrated over the last few weeks, fire season isn’t ending any time soon. Given the spring rains that promoted so much growth to potential fire fuel, it could end up being a record year.
While it’s impossible to predict just where the next wildfire will start, new Department of Defense-sponsored research from BYU’s Fire Research Lab is getting into the microscopic details of how fires initiate to provide more insight into how wildfires burn through wildland fuels.
“We are working on a small scale and hopefully that gives us some insight into what happens on a large scale,” said fire expert Thomas H. Fletcher, BYU professor of chemical engineering. “We’re trying to take some of the unpredictability out of fire by doing experiments in well-controlled environments.”
For their experiments, Fletcher and co-authors loaded leaves of 14 shrub species (including the likes of Inkberry, Wax Myrtle, Fetterbush, Dwarf Palmetto and Sparkleberry) into the crucible of a thermogravimetric analyzer and slowly turned the heat up to 800 degrees Celsius. As they watched the leaves burn, they categorized the speed at which the plant broke down and the chemicals produced by the heat. They also compared the impact of two heat sources: convective (think of wind-driven fires) and radiative (from burning plant particles or flames).
Continue reading at Brigham Young University
Image via BYU Photo