Securing enough energy to meet human needs is one of the greatest challenges society has ever faced.
Securing enough energy to meet human needs is one of the greatest challenges society has ever faced. Previously reliable sources—oil, gas and coal—are degrading air quality, devastating land and ocean and altering the fragile balance of the global climate, through the release of CO2 and other greenhouse gases. Meanwhile, earth’s rapidly industrializing population is projected to reach 10 billion by 2050. Clean alternatives are a matter of urgent necessity.
Researchers at ASU’s Biodesign Center for Applied Structural Discovery are exploring new technologies that could pave the way to clean, sustainable energy to help meet daunting global demand.
In new research appearing in the Journal of the American Chemical Society (JACS), the flagship journal of the ACS, lead author Brian Wadsworth, along with colleagues Anna Beiler, Diana Khusnutdinova, Edgar Reyes Cruz, and corresponding author Gary Moore describe technologies that combine light-gathering semiconductors and catalytic materials capable of chemical reactions that produce clean fuel.
The new study explores the subtle interplay of the primary components of such devices and outlines a theoretical framework for understanding the underlying fuel-forming reactions. The results suggest strategies for improving the efficiency and performance of such hybrid technologies, bringing them a step closer to commercial viability.
Read more at Arizona State University
Image: Gary Moore is a researcher in the Biodesign Center for Applied Structural Discovery and assistant professor at ASU's School of Molecular Sciences. (Credit: Biodesign Institute at Arizona State University)