Major volcanic eruptions spew ash particles into the atmosphere, which reflect some of the Sun’s radiation back into space and cool the planet.
Major volcanic eruptions spew ash particles into the atmosphere, which reflect some of the Sun’s radiation back into space and cool the planet. But could this effect be intentionally recreated to fight climate change? A new paper in Geophysical Research Letters investigates.
Solar geoengineering is a theoretical approach to curbing the effects of climate change by seeding the atmosphere with a regularly replenished layer of intentionally released aerosol particles. Proponents sometimes describe it as being like a “human-made” volcano.
“Nobody likes the idea of intentionally tinkering with our climate system at global scale,” said Carnegie’s Ken Caldeira. “Even if we hope these approaches won’t ever have to be used, it is really important that we understand them because someday they might be needed to help alleviate suffering.”
He, along with Carnegie’s Lei Duan (a former student from Zhejiang University), Long Cao of Zhejiang University, and Govindasamy Bala of the Indian Institute of Science, set out to compare the effects on the climate of a volcanic eruption and of solar geoengineering. They used sophisticated models to investigate the impact of a single volcano-like event, which releases particulates that linger in the atmosphere for just a few years, and of a long-term geoengineering deployment, which requires maintaining an aerosol layer in the atmosphere.
Read more at Carnegie Institution for Science
Photo: USGS photo of Mount Pinatubo erupting. CREDIT: USGS