Researchers at the University of Houston have found neuro biomarkers for Parkinson’s disease that can help create the next generation of “smart” deep brain stimulators, able to respond to specific needs of Parkinson’s disease patients.
Researchers at the University of Houston have found neuro biomarkers for Parkinson’s disease that can help create the next generation of “smart” deep brain stimulators, able to respond to specific needs of Parkinson’s disease patients. Those with the disease often undergo the high-frequency brain stimulation, a well-established therapy for the progressive nervous system disorder that affects movement, but the therapy has been imprecise.
Currently, stimulators can only be programmed clinically and are not adaptable to the fluctuating symptoms of the disease which can include tremors, slowness or inability to walk. The biomarkers are key to improving the technology to make it responsive, or smart.
“We can now make the closed-loop stimulator adaptive to sense a patient’s symptoms, so it can make the adjustments to the fluctuations in real time, and the patient no longer has to wait for weeks or months until the doctor can adjust the device,” said Nuri Ince, associate professor of biomedical engineering. He and doctoral student Musa Ozturk, lead author of the paper, published their findings in Movement Disorders journal.
Nearly 10 million people worldwide are living with Parkinson’s disease and approximately 60,000 Americans are diagnosed with the disease each year.
Read more at: University of Houston
Nuri Ince, associate professor of biomedical engineering at the University of Houston. (Photo Credit: University of Houston)