Scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have taken the first images of carbon dioxide molecules within a molecular cage – part of a highly porous nanoparticle known as a MOF, or metal-organic framework, with great potential for separating and storing gases and liquids.
Scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have taken the first images of carbon dioxide molecules within a molecular cage – part of a highly porous nanoparticle known as a MOF, or metal-organic framework, with great potential for separating and storing gases and liquids.
The images, made at the Stanford-SLAC Cryo-EM Facilities, show two configurations of the CO2 molecule in its cage, in what scientists call a guest-host relationship; reveal that the cage expands slightly as the CO2 enters; and zoom in on jagged edges where MOF particles may grow by adding more cages.
“This is a groundbreaking achievement that is sure to bring unprecedented insights into how these highly porous structures carry out their exceptional functions, and it demonstrates the power of cryo-EM for solving a particularly difficult problem in MOF chemistry,” said Omar Yaghi, a professor at the University of California, Berkeley and a pioneer in this area of chemistry, who was not involved in the study.
The research team, led by SLAC/Stanford professors Yi Cui and Wah Chiu, described the study today in the journal Matter.
Read more at DOE/SLAC National Accelerator Laboratory
Image: Cryo-EM images show a slice through a single MOF particle in atomic detail (left), revealing cage-like molecules (center) that can trap other molecules inside. The image at right shows carbon dioxide molecules trapped in one of the cages -- the first time this has ever been observed. Bottom right, a drawing of the molecular structure of the cage and the trapped CO2. (Credit: Li et al., Matter, 26 June 2019)