Manipulating Light-Matter Interaction Unlocks Properties for Quantum Information Storage and Computing

Typography

Researchers at Rensselaer Polytechnic Institute have come up with a way to manipulate tungsten diselenide (WSe2) —a promising two-dimensional material—to further unlock its potential to enable faster, more efficient computing, and even quantum information processing and storage. 

Researchers at Rensselaer Polytechnic Institute have come up with a way to manipulate tungsten diselenide (WSe2) —a promising two-dimensional material—to further unlock its potential to enable faster, more efficient computing, and even quantum information processing and storage. Their findings were published today in Nature Communications.

Across the globe, researchers have been heavily focused on a class of two-dimensional, atomically thin semiconductor materials known as monolayer transition metal dichalcogenides. These atomically thin semiconductor materials—less than 1 nm thick—are attractive as the industry tries to make devices smaller and more power efficient.

“It’s a completely new paradigm,” said Sufei Shi, assistant professor of chemical and biological engineering at Rensselaer and corresponding author on the paper. “The advantages could be huge.”

Shi and his research team, in partnership with staff from the Micro and Nano Fabrication Clean Room within the Center for Materials, Devices, and Integrated Systems at Rensselaer, have developed a method to isolate these thin layers of WSe2 from crystals so they can stack them on top of other atomically thin materials such as boron nitride and graphene.

Read more at Rensselaer Polytechnic Institute

Photo Credit: TheDigitalArtist via Pixabay