Trembling Aspen Leaves Could Save Future Mars Rovers

Typography

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even be a back-up energy supply that could save and extend the life of future Mars rovers.

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even be a back-up energy supply that could save and extend the life of future Mars rovers.

University of Warwick third year engineering undergraduates have in recent years been set the task of the examining the puzzle of why Aspen leaves quiver in the presence of a slightest breeze. University of Warwick Engineering researchers Sam Tucker Harvey, Dr Igor A. Khovanov, and Dr Petr Denissenko were inspired to look more closely at this task they were annually setting for their students and to take the phenomenon one step further.

They decided to investigate whether the underlying mechanisms that produce the low wind speed quiver in Aspen leaves could efficiently and effectively generate electrical power, simply by exploiting the wind generated mechanical movement of a device modelled on the leaf. They have today 18th March 2019 published the answer to that question as a paper entitled “A Galloping Energy Harvester with Flow Attachment” in Applied Physics Letters and the answer is a resounding yes.

Read more at University of Warwick

Image: Dr. Petr Denissenko, of the School of Engineering at the University of Warwick. (Credit: University of Warwick)