A Study Shows an Increase of Permafrost Temperature at a Global Scale

Typography

Permafrost, the ground below the freezing point of water 0 º for two or more years, is an element of the cryosphere which has not been as much studied as other soils like glaciers or marine ice, although it plays an important role in the climate evolution of the planet and in several human activities. 

Permafrost, the ground below the freezing point of water 0 º for two or more years, is an element of the cryosphere which has not been as much studied as other soils like glaciers or marine ice, although it plays an important role in the climate evolution of the planet and in several human activities. Now, for the first time, a review of the state of permafrost on Earth has been carried out thanks to the data analysis of more than 120 drillings distributed around the Arctic and the Antarctica, as well as in mountains and high plains worldwide.

The study, titled “Permafrost is warming at a global scale” has been published in the journal Nature Communications, and is led by the researcher Boris Biskaborn, from the Alfred Wegener Institute for Polar and Marine Research (Germany). Among the collaborators of the study is Marc Oliva, coordinator of the Research Group Antarctic, Arctic and Alpine Environments (ANTALP), from the University of Barcelona.

The analysed data were stored in the Global Terrestrial Network for Permafrost, an international initiative promoting the homogenization of data gathering on permafrost monitoring. The obtained data from 2007 to 2016 show that soil temperatures of continuous permafrost raised by 12,39 ± 12,15 °C, while discontinuous permafrost warmed by 12,20 ± 12,10 °C. In high mountains, the permanent frozen soil temperature rose by 12,19 ± 12,05 °C and the few existing holes in the Antarctica show a rise of temperatures of the order 12,37 ± 12,10 °C. The temperature of the terrestrial permafrost is estimated to have increased by 12,29 ± 12,12 ° C.

Read more at University of Barcelona

Image: This is the Cierva Cove, in the Antarctic Peninsula. (Credit: Photo: Marc Oliva)