Scientists studying a valuable, but vulnerable, species of poplar have identified the genetic mechanism responsible for the species’ inability to resist a pervasive and deadly disease. Their finding, published in the Proceedings of the National Academy of Sciences, could lead to more successful hybrid poplar varieties for increased biofuels and forestry production and protect native trees against infection.
Scientists studying a valuable, but vulnerable, species of poplar have identified the genetic mechanism responsible for the species’ inability to resist a pervasive and deadly disease. Their finding, published in the Proceedings of the National Academy of Sciences, could lead to more successful hybrid poplar varieties for increased biofuels and forestry production and protect native trees against infection.
A research team—jointly led by the Department of Energy’s Oak Ridge National Laboratory and Oregon State University in partnership with the DOE Joint Genome Institute and the University of Georgia—analyzed the genetic response of purebred black cottonwood poplars infected by a pathogen known as Septoria.
Septoria causes untreatable cankers, or wounds, on the surface of the trunk and branches and kills trees early in the growing cycle.
“Since the 1900s, industry has tried to grow hybrid varieties of poplar—including those made by crossing eastern cottonwood and black cottonwood—to produce a faster-growing tree, and they have been puzzled by the early death of hybridized poplars grown in many parts of the United States,” said Wellington Muchero, the study’s lead author with the Center for Bioenergy Innovation at ORNL.
Read more at DOE/Oak Ridge National Laboratory
Image: Black cottonwood poplar trees are vulnerable to a pathogen known as Septoria that causes cankers, or wounds, to grow on the stem and branches. Scientists have discovered the genetic behavior responsible for the tree's inability to resist the pervasive and deadly disease. (Credit: Jay Chen/Oak Ridge National Laboratory, U.S. Dept. of Energy)