Diamond technology cleans up PFAS-contaminated wastewater

Typography

More than 1.5 million Michigan residents and potentially more than hundreds of sites nationwide ­– and counting – have PFAS-tainted water.

 

More than 1.5 million Michigan residents and potentially more than hundreds of sites nationwide ­– and counting – have PFAS-tainted water. Michigan State University-Fraunhofer USA, Inc. Center for Coatings and Diamond Technologies (MSU-Fraunhofer) is developing a scalable treatment option for PFAS-contaminated wastewater.

PFAS, or per- and polyfluoroalkyl substances, are colloquially known as “forever chemicals” because they are so difficult to break down. They are found in water supplies wherever flame retardants, waterproofing or vapor suppressants are used. PFAS can be absorbed through direct contact (drinking, bathing, swimming) or indirectly (eating meat or vegetables that have been exposed to PFAS).

A successful method to destroy PFAS remained elusive because of their extremely tough chemical structure. And because the recalcitrant compounds are difficult to breakdown, they accumulate over time and have been linked to adverse health effects. PFAS are so potent that even trace amounts are dangerous. Imagine three drops of an eye dropper in an Olympic-size pool. These three drops are about equal to the EPA health advisory level for PFOA and PFOS (two types of PFAS) in drinking water, which is 70 parts per trillion.

The MSU-Fraunhofer team has a viable solution to treat PFAS-contaminated wastewater that’s ready for a pilot-scale investigation. The electrochemical oxidation system uses boron-doped diamond electrodes. The process breaks down the contaminants’ formidable molecular bonds, cleaning the water while systematically destroying the hazardous compounds.

 

Continue reading at Michigan State University.

Image via Michigan State University.