A new large-scale hydroeconomic model, developed by the Water Program at IIASA, will allow researchers to study water systems across whole continents, looking at sustainability of supply and the impacts of water management on the energy and agricultural sectors.
A new large-scale hydroeconomic model, developed by the Water Program at IIASA, will allow researchers to study water systems across whole continents, looking at sustainability of supply and the impacts of water management on the energy and agricultural sectors.
Hydroeconomic models are increasingly becoming an important tool for water resources planning in river basins. Taher Kahil, the IIASA researcher who led the development of the Extended Continental-scale Hydroeconomic Optimization (ECHO) model, explains that hydroeconomic modeling is rarely used over scales larger than a basin, and especially not at continental-scale. ECHO is one of the first large-scale models that integrates hydrological, environmental, economic, and institutional aspects.
As the rising global population and climate change further increase pressure on water resource systems, as well as energy and land systems, the so-called water-energy-land nexus, policymakers will need to be better informed when it comes to adapting management practices to ensure sustainability.
“ECHO can be used to simulate a variety of water management interventions including efficiency improvements, resource extractions, reservoir storage, interbasin transfers, and non-conventional water resources, among many others. The model should provide useful information to policymakers on the optimal combination of management interventions to address water scarcity challenges as well as the trade-offs and synergies among these various interventions,” says Kahil.
Read more at International Institute for Applied Systems Analysis
Photo credit: cuciarita via Pixabay