NASA’s Cassini mission – with Imperial kit on board – took a series of daring dives between the planet and its inmost ring in September 2017 before burning up in the planet’s atmosphere.
NASA’s Cassini mission – with Imperial kit on board – took a series of daring dives between the planet and its inmost ring in September 2017 before burning up in the planet’s atmosphere.
A first analysis of the data from the magnetometer instrument, built and run by Imperial College London physicists, shows that the planet's magnetic field has a tilt of less than 0.01?. The results are published today in a special issue of Science reporting the first end-of-mission results.
It was thought that magnetic fields around planets can only form when there is a discernible tilt between the rotation axis of the planet and the magnetic field axis. This is the situation on Earth, where the magnetic poles are offset from the geographic poles.
This tilt sustains currents in a liquid metal layer deep inside a planet – on Earth this is a liquid iron-nickel layer around the solid iron core, and on Saturn it’s believed to be a metallic hydrogen layer surrounding a small rocky core.
Read more at Imperial College London
Photo Credit: WikiImages via Pixabay