A New Theory for Phantom Limb Pain Points the Way to More Effective Treatment

Typography

​Dr Max Ortiz Catalan at Chalmers has developed a new theory for the origin of the mysterious condition, ‘phantom limb pain’. Published in the journal Frontiers in Neurology, his hypothesis builds upon his previous work on a revolutionary treatment for the condition, that uses machine learning and augmented reality.​

​Dr Max Ortiz Catalan at Chalmers has developed a new theory for the origin of the mysterious condition, ‘phantom limb pain’. Published in the journal Frontiers in Neurology, his hypothesis builds upon his previous work on a revolutionary treatment for the condition, that uses machine learning and augmented reality.​

​Phantom limb pain is a poorly understood phenomenon, in which people who have lost a limb can experience severe pain, seemingly located in that missing part of the body. The condition can be seriously debilitating and can drastically reduce the sufferer’s quality of life. But current ideas on its origins cannot explain clinical findings, nor provide a comprehensive theoretical framework for its study and treatment.

Now, Max Ortiz Catalan, Associate Professor at the Department of Electrical Engineering, has published a paper that offers up a promising new theory – one that he terms ‘stochastic entanglement’.

He proposes that after an amputation, neural circuitry related to the missing limb loses its role and becomes susceptible to entanglement with other neural networks – in this case, the network responsible for pain perception.

Read more at Chalmers University of Technology

Image: Sufferers of PLP describe a variety of sensations, from burning, aching, and throbbing to crushing and shooting pain. (Credit: Yen Strandqvist/Chalmers University of Technology)