A technical breakthrough was achieved in the source determination of very small carbon samples at the Accelerator Laboratory and the Laboratory of Chronology of the University of Helsinki. The development work is essential in climate research as it facilitates disentangling the origin of, for instance, black carbon particles.
A technical breakthrough was achieved in the source determination of very small carbon samples at the Accelerator Laboratory and the Laboratory of Chronology of the University of Helsinki. The development work is essential in climate research as it facilitates disentangling the origin of, for instance, black carbon particles.
The ratio of modern biomass vs. fossil material present in any carbon containing sample can be determined by radiocarbon dating with a particle accelerator. The amount of the radioactive isotope of carbon (14C, radiocarbon) is halved every 6,000 years, making fossil material entirely free of it.
In recent years, the method based on the half-life of radiocarbon has been used particularly in Finland to determine the proportion of biomass in fuels – in support of bioeconomy. Typically, particle accelerators require one milligram of solid carbon to quantify the very small amounts of radiocarbon contained in samples.
“The ratio of radiocarbon in carbon is one millionth of a millionth. We are not looking for a needle in the haystack, but for the needle tip on the entire farm,” illustrates Markku Oinonen, director of the Laboratory of Chronology.
Read more at University of Helsinki
Image: Soot on slopes of the Rocky Mountain (Credit: NASA GODDARD SPACE FLIGHT CENTER CC BY 2.0)