To improve water treatment, researchers use modeling to understand how chemical byproducts form during the advanced oxidation process.
To improve water treatment, researchers use modeling to understand how chemical byproducts form during the advanced oxidation process.
Synthetical chemicals are ever-present in modern life—in our medications, cosmetics and clothing—but what happens to them when they enter our municipal water supplies?
Because these chemicals are out-of-sight, out-of-mind, we assume they cannot harm us after we flush them down the sink. However, most water treatment infrastructures were not designed to remove synthetic organic chemicals like those found in opioids, personal care products and pharmaceuticals.
Consequently, trace concentrations of those chemicals are present in effluent: the water discharged from treatment plants into lakes, rivers and streams. Although found in extremely small concentrations, just nanograms or micrograms, the toxicity is not well understood in human bodies and ecosystems.
Worse, we know even less about the effects on human and ecosystem health of byproducts created during advanced oxidation water treatment processes; thousands of chemical byproducts can be created in just minutes.
Read more at Michigan Technological University
Image: During flash flooding, water treatment systems can become overwhelmed, allowing untreated effluent and household chemicals to flow into local waterways. (Credit: Sarah Bird/Michigan Tech)