Stanford researchers find groundwater pumping can increase arsenic levels in irrigation and drinking water

Typography

For decades, intensive groundwater pumping has caused ground beneath California’s San Joaquin Valley to sink, damaging infrastructure. Now research published in the journal Nature Communications suggests that as pumping makes the ground sink, it also unleashes an invisible threat to human health and food production: It allows arsenic to move into groundwater aquifers that supply drinking water for 1 million people and irrigation for crops in some of the nation’s richest farmland.

For decades, intensive groundwater pumping has caused ground beneath California’s San Joaquin Valley to sink, damaging infrastructure. Now research published in the journal Nature Communications suggests that as pumping makes the ground sink, it also unleashes an invisible threat to human health and food production: It allows arsenic to move into groundwater aquifers that supply drinking water for 1 million people and irrigation for crops in some of the nation’s richest farmland.

The group found that satellite-derived measurements of ground sinking could predict arsenic concentrations in groundwater. This technique could be an early warning system to prevent dangerous levels of arsenic contamination in aquifers with certain characteristics worldwide.

“Arsenic in groundwater has been a problem for a really long time,” said lead author Ryan Smith, a doctoral candidate in geophysics at the School of Earth, Energy & Environmental Sciences (Stanford Earth). It’s naturally present in Earth’s crust and a frequent concern in groundwater management because of its ubiquity and links to heart disease, diabetes, cancer and other illnesses. “But the idea that overpumping for irrigation could increase arsenic concentrations is new,” Smith said.

Read more at Stanford University

Image via Pixabay