Record-Breaking Ocean Heat Fueled Hurricane Harvey

Typography

In the weeks before Hurricane Harvey tore across the Gulf of Mexico and plowed into the Texas coast in August 2017, the Gulf's waters were warmer than any time on record, according to a new analysis led by the National Center for Atmospheric Research (NCAR).

These hotter-than-normal conditions supercharged the storm, fueling it with vast stores of moisture, the authors found. When it stalled near the Houston area, the resulting rains broke precipitation records and caused devastating flooding.

In the weeks before Hurricane Harvey tore across the Gulf of Mexico and plowed into the Texas coast in August 2017, the Gulf's waters were warmer than any time on record, according to a new analysis led by the National Center for Atmospheric Research (NCAR).

These hotter-than-normal conditions supercharged the storm, fueling it with vast stores of moisture, the authors found. When it stalled near the Houston area, the resulting rains broke precipitation records and caused devastating flooding.

"We show, for the first time, that the volume of rain over land corresponds to the amount of water evaporated from the unusually warm ocean," said lead author Kevin Trenberth, an NCAR senior scientist. "As climate change continues to heat the oceans, we can expect more supercharged storms like Harvey."

Despite a busy 2017 hurricane season, Hurricane Harvey was more or less isolated in location and time, traveling solo over relatively undisturbed waters in the Gulf of Mexico. This gave Trenberth and his colleagues an opportunity to study in detail how the storm fed off the heat stored in that 930-mile wide ocean basin.

Read more at University Corporation for Atmospheric Research (UCAR)

Image: An image of Hurricane Harvey taken by the GOES-16 satellite as the storm collided with the Texas coast. (Image courtesy NASA)