La Niña-like ocean cooling patterns intensify tropical cyclones

Typography

The intensity and frequency of strong tropical cyclones, as well as cyclone landfalls, have increased in recent decades in the northwestern Pacific Ocean, raising speculation about the root cause of the surge in destructive Category 4 and 5 storms.

Now atmospheric researchers at the University of Hawaiʻi at Mānoa‘s International Pacific Research Center (IPRC) have published a study in Scientific Reports showing a strong connection between sea surface temperature patterns associated with the Global Warming Hiatus phenomenon and changes in cyclone activity over the northwest Pacific Ocean, particularly increasing intensities in coastal regions of East Asia.

The intensity and frequency of strong tropical cyclones, as well as cyclone landfalls, have increased in recent decades in the northwestern Pacific Ocean, raising speculation about the root cause of the surge in destructive Category 4 and 5 storms.

Now atmospheric researchers at the University of Hawaiʻi at Mānoa‘s International Pacific Research Center (IPRC) have published a study in Scientific Reports showing a strong connection between sea surface temperature patterns associated with the Global Warming Hiatus phenomenon and changes in cyclone activity over the northwest Pacific Ocean, particularly increasing intensities in coastal regions of East Asia.

Climate change has been marked by a persistent, if uneven, increase in global temperatures through time.

Around the turn of the century, 1998-2012, the rate of temperature increase apparently slowed, and has since been labeled the Global Warming Hiatus. During this period, while the Indian and tropical north Atlantic Oceans warmed, the tropical eastern Pacific Ocean experienced La Niña-like cooling.

La Niña is usually characterized by cooler sea surface temperatures in the eastern and central Pacific, pushing cyclone generation westward.

Read more at University of Hawaii at Manoa

Photo: Cyclone Sinlaku makes landfall in east China in 2002. (Photo courtesy: MODIS/NASA)