MIT researchers have devised a miniaturized system that can deliver tiny quantities of medicine to brain regions as small as 1 cubic millimeter. This type of targeted dosing could make it possible to treat diseases that affect very specific brain circuits, without interfering with the normal function of the rest of the brain, the researchers say.
MIT researchers have devised a miniaturized system that can deliver tiny quantities of medicine to brain regions as small as 1 cubic millimeter. This type of targeted dosing could make it possible to treat diseases that affect very specific brain circuits, without interfering with the normal function of the rest of the brain, the researchers say.
Using this device, which consists of several tubes contained within a needle about as thin as a human hair, the researchers can deliver one or more drugs deep within the brain, with very precise control over how much drug is given and where it goes. In a study of rats, they found that they could deliver targeted doses of a drug that affects the animals’ motor function.
“We can infuse very small amounts of multiple drugs compared to what we can do intravenously or orally, and also manipulate behavioral changes through drug infusion,” says Canan Dagdeviren, the LG Electronics Career Development Assistant Professor of Media Arts and Sciences and the lead author of the paper, which appears in the Jan. 24 issue of Science Translational Medicine.
Read more at Massachusetts Institute of Technology (MIT)
Image: From left to right, the research team includes Institute Professor Robert Langer, Institute Professor Ann Graybiel, Assistant Professor Canan Dagdeviren, and Professor Michael Cima.
CREDIT: M. Scott Brauer