FSU researcher: Ocean acidification means major changes for California mussels

Typography

Accelerating ocean acidification could be transforming the fundamental structure of California mussel shells, according to a new report from a Florida State University-led team of scientists.

Accelerating ocean acidification could be transforming the fundamental structure of California mussel shells, according to a new report from a Florida State University-led team of scientists.

For thousands of years, California mussel shells have shared a relatively uniform mineralogical makeup — long, cylindrical calcite crystals ordered in neat vertical rows with crisp, geometric regularity. But in a study published this week in the journal Global Change Biology, researchers suggest that escalating rates of ocean acidification are shaking up that shell mineralogy on its most basic structural levels.

“What we’ve seen in more recent shells is that the crystals are small and disoriented,” said Assistant Professor of Biological Science Sophie McCoy, who led the study. “These are significant changes in how these animals produce their shells that can be tied to a shifting ocean chemistry.”

To document these changes, the research team studied an archival record of natural California mussel specimens collected from Tatoosh Island off the northwestern tip of Washington. Modern mussel shells were compared to shells from the 1970s as well as shells provided by the local Makah Cultural and Research Center dating back thousands of years.

Continue reading at Florida State University

Photo: McCoy and her team found that increased ocean acidification is affecting California mussel shells on a fundamental structural level. (CREDIT: Sophie McCoy)