Last month, three MIT materials scientists and their colleagues published a paper describing a new artificial-intelligence system that can pore through scientific papers and extract “recipes” for producing particular types of materials.
Last month, three MIT materials scientists and their colleagues published a paper describing a new artificial-intelligence system that can pore through scientific papers and extract “recipes” for producing particular types of materials.
That work was envisioned as the first step toward a system that can originate recipes for materials that have been described only theoretically. Now, in a paper in the journal npj Computational Materials, the same three materials scientists, with a colleague in MIT’s Department of Electrical Engineering and Computer Science (EECS), take a further step in that direction, with a new artificial-intelligence system that can recognize higher-level patterns that are consistent across recipes.
For instance, the new system was able to identify correlations between “precursor” chemicals used in materials recipes and the crystal structures of the resulting products. The same correlations, it turned out, had been documented in the literature.
Continue reading at Massachusetts Institute of Technology